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The paper is a discussion of measurements of the statistical properties of the 
pressure field a t  the wall of turbulent attached shear flows. These measurements 
have been made only in part by the author. A preliminary discussion is given of 
the important limitations imposed by the imperfect space resolution of con- 
temporary pressure transducers. There follows a discussion of the appropriate 
scales of the pressure field. It is shown that measurements of the longitudinal 
cross-spectral densities lead to similarity variables for the space-time covariance 
of the pressure and for the corresponding spectra. The existence of these similarity 
variables may be due to the dispersion of the sources of pressure by the mean 
velocity gradient. Such a mechanism is illustrated by a simple model. Lateral 
cross-spectral densities also lead approximately to similarity variables. 

Computations based directly upon detailed pressure-velocity correlation 
nieasurements by Wooldridge & Willmarth reveal that an important part of the 
pressure a t  the wall of a boundary layer is contributed by source terms which are 
quadratic in the turbulent velocity fluctuations; the interaction of the mean 
strain rate with normal velocity fluctuations, being in effect limited to a region 
very near the wall, supplies a dominant contribution only at  high frequencies and 
its scales, downstreani convective speed and convective memory are markedly 
smaller than those of the observed wall pressure. 

The inner part of the Law of the Wall region (y* < 100) seems to be substan- 
tially free of pressure sources and within that region (a) the pressure can be 
given in terms of its boundary value, and (6 )  the local velocity field is dependent 
upon but unable to affect appreciably the turbulent pressures. 

Introduction 
I n  an incompressible turbulent flow, the two dependent variables are velocity 

and pressure. Because such a flow is not irrotational, no kinematic solution is 
possible and because its dynamic equations are non-linear no simultaneous 
determination of pressure and velocity has been given no matter how simple 
the geometry of the flow or the boundary conditions. On the other hand, while 
a large number of measurements have permitted useful and informative experi- 
mental generalizations to be made, it seems fair to state that they have not 
supplied, to date, the physical basis for postulates which would be sufficient to 
initiate a theory of turbulence. 

Largely because of the development of the hot-wire anemometer, experiments 
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had until recently favoured the measurement of instantaneous velocity fluctua- 
tions and the determination of statistical quantities derived from averages of 
these velocities. But a growing body of experimental literature is reporting 
measurements of pressure fluctuations. This is due in part to progress in measur- 
ing techniques, in part to an engineering interest in the pressure fluctuations 
themselves. For, whether pressure fluctuations solicit the motion of a flexible 
boundary (and thus cause the boundary to vibrate and to radiate a sound field) 
or couple directly with a surrounding fluid medium (generating aerodynamic 
noise) they are prime movers. 

The following account is an attempt to interpret some of these pressure 
measurements. The discussion is not meant to be exhaustive and the reader will 
find treated elsewhere topics which have been omitted here. It must be admitted 
at the outset that the conclusions which are offered apparently provide only 
modest help to a theoretician although it is hoped that some of them will prove 
useful. 

The experimental results which are the basis for the discussion are in part 
the author’s ow-n, in part due to a number of contributors, accounts of whose 
work are referenced in the text. However, the author gladly acknowledges the 
special value of one source of data: the excellent measurements made under W. 
Willmarth’s guidance. 

The defining equations 
Consider an incompressible turbulent flow. The relevant Navier-Stokes 

equations provide us with a relation between fluctuating pressures and fluctua- 
ting velocities av 1 

at Po 
-- -t V . grad V + -grad P = vo div grad V, 

whereV is thevelocityvector,p, and vo are the densityand the kinematicviscosity, 
both assumed constant, and P is the pressure. If we take the divergence of each 
term of this equation and make use of the continuity equation, i.e. 

divV = 0 
we obtain div grad P = - po div div (V; V) 
or in Cartesian index notation, wherein V = (K) and the position vector x = (xi)  

- a26 y _ -  __ 
PP _ _  
ax; PO axj * 

V(x, t )  = U(X) +v(x, t ) ,  

If we define, for a statistically stationary flow, 

where 

and likewise, 
we may write, with U = (Ui), 

P ( X ,  t )  = PO(X) +P(X, t ) ,  

in which an overbar denotes a time average similar to that used to define U .  
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The area scale of the pressure field 
One of the very few inferences which can be made about the pressure on 

theoretical grounds alone concerns the instantaneous integral over a plane solid 
boundary of the pressure caused by an incompressible turbulent flow which is 
homogeneous in planes parallel to the boundary and which vanishes sufficiently 
fast in the direction normal to the boundary. This result may be applied to a 
two-dimensional boundary layer in the absence of an external pressure gradient, 
in so far as homogeneity along planes parallel to the boundary is well approxi- 
mated over distances which are large when compared to a typical turbulence 
length scale. As Phillips has shown (1954), provided the velocity fluctuations 
vanish both a t  the boundary and a t  infinity (in a direction normal to the bound- 
ary), the momentum and continuity equations yield in this case 

where the normal distance from the boundary is x2 or t2 and the integration is 
carried over the whole plane of the boundary. Kraichnan (1956) gave an equiva- 
lent result in terms of the two-dimensional spectral function E(0, k,, k3) .  Specifi- 
cally, if 

and if one defines 

then Kraichnan's result is that 
lim E(0, k,, k3)  = 0. ( 5 )  

I,.,, k,-O 

Hence the pressure correlation a t  the wall must be negative for some values of 
f l  and 63.  

An approximate boundary condition 
Equation (3) may be viewed as a Poisson equation for the fluctuating pressure 

p ,  in which case one imagines the right-hand side as a given scalar field. Boundary 
conditions are then required in terms of the pressure. A t  infinity we shall take 
p = 0. A t  the plane rigid wall of a turbulent boundary layer, Kraichnan (1956) 
examined the normal component of equation ( 1 )  in the light of velocity measure- 
ments in the vicinity of the sublayer and suggested that (ap/ax2)x,=o r 0. A 
somewhat more detailed analysis by Lilley & Hodgson (1960) leads to the 
same result by showing that, a t  least in the absence of a mean pressure gradient, 
typical solutions of equation (3) are negligibly affected by such an approximation. 
Physically the demonstration consists in a comparison of a typical inertia term 
povi(avi/axi) with Townsend's (1956) estimate of [(ap/&2)2]$,=o and so is equiva- 
lent to the boundary-layer approximations in steady flow. The two boundary 
conditions above permit the pressure at  the wall to be given formally by 

____ 

where the integral is taken over the unbounded half-space above the boundary. 
23-2 
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Measurement limitations 
So far, all instantaneous pressure measurements in wall-attached shear flows 

have been made a t  the solid boundary. This is due in part to an intrinsic engineer- 
ing interest in unsteady forces exerted on solid boundaries, in part to the fact 
that a probe introduced in the stream creates and records dynamic stresses 
which are different from the static pressure fluctuations. Thus our direct informa- 
tion is spatially limited. 

There is another limitation which is perhaps worth mentioning a t  the outset 
because it seems to affect significantly almost all measurements of pressure 
fluctuations to date. This is the imperfect space resolution of the face of the 
pressure transducers used. 

Transducer resolution 

A transducer sensing element of non-zero size can only resolve adequately a 
spatial distribution of pressure, the length scale of which is greater than the 
characteristic dimensions of the transducer face. A similar problem arises in the 
use of hot-wire anemometry. The theoretical problem of the recovery of informa- 
tion a t  a point from the area average performed by the transducer may be 
viewed as the mapping of a random function of space by a linear operator. The 
mapping is a space integration and so some of the information is lost. The formal- 
ism is well understood (see, for instance, Uberoi & Kovasnay 1953), but it does 
not become useful until the lost information is supplied either by a postulate 
(say, isotropy) or by additional measurements. In  the case of pressure transducers 
the problem has been analysed (Corcos 1963) with the help of the most detailed 
experimental information available to date about the space-time properties of 
the pressure field. A scheme was given to correct systematically experimental 
measurements of all statistical averages related to the space-time covariance 
of the pressure a t  least for a turbulent boundary layer. However, the correction 
is a very sensitive function of the apparent translation velocity of the pressure 
field about which our information is not yet of great accuracy. 

When the correction is applied to available measurements, one finds that it is 
often prohibitively large. In  fact, in most experiments the fine scale contribution 
to the pressure signal has been so attenuated by the probe as to have escaped 
detection, whereas extrapolation from the recorded frequency spectra for the 
smallest detected scale, properly corrected for transducer resolution, suggests 
that the contributions which have been overlooked may be an appreciable 
fraction of the signal. As a consequence, some important experimental quantities 
such as the fluctuating pressure intensity, and the apparent rate of downstream 
transport of the pressure field, may have been measured withimportant systematic 
errors which cannot yet be evaluated. Let us note that the correction factor 
for the pressure intensity is far from linear with transducer size so that extra- 
polations of pressure intensity from results obtained with inadequate transducer 
diameters are likely to be misleading. 
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The choice of non-dimensional parameters 
It is well known that even when the Mach number, the degree of roughness 

and the longitudinal pressure gradient are eliminated as parameters, a turbulent 
boundary layer is not a self-similar flow in the sense that the average quantities 
are not functions of a single non-dimensional length or a single non-dimensional 
velocitty. In  the outer part of such flows, for instance, the mean velocity U, is 
referred both to the free-stream velocity Urn and to the so-called friction velocity 

Re = (OdJti) x 

FIGURE 1. Turbulent pipe flow: the root-mean-square pressure a t  the wall as a function 
of Reynolds number. Correction for transducer size not applied but independent of 
Reynolds number. 

u* = J(T,,/p,) (where T,,, is the mean shear stress a t  the wall) and the dominant 
characteristic length is the boundary-layer thickness 6. In  the inner part of the 
flow (the Law of the Wall region) the characteristic velocity is u* and a length scale 
is taken as v/u*. But even in this limited region, and even if one considers only the 
coarse features of turbulence, this is not the only characteristic length. For 
instance, the frequency spectra of the downstream component v1 of the velocity 
fluctuations are closely similar throughout the Law of the Wall region when 
plottedagainst o6/U1independently of the Reynoldsnumber u*6/v; whereas anon- 
dimensional frequency derived from the viscous length v/u*, i.e. w / U l u * ,  is grossly 
unable to bring into coincidence two v1 spectra taken a t  the same non-dimensional 
distance, yu*/v,  from the wall if the Reynolds number u*6/v is different.? Thus 
it is clear that a t  least some of the length scales found in the inner part of a 
boundary layer are impressed upon it by the characteristic length of the outer 
flow. The relationship between pressure and velocity fluctuations confers upon 
the pressure field scales which depend both on the scales of the velocity fluctua- 
tions and upon their distribution normal to the wall. Thus it is not obvious 

t Such a comparison may be made from the data of Klebanoff (1954) and Wooldridge 
& Willmarth (1962) with a Reynolds number ratio of about 6 to 1. 



358 G. M .  Corcos 

a, priori which parameters should be used in the presentation of pressure measure- 
ments. The evidence from existing data for boundary layers and pipe flows 
is relatively clear in this respect. 

FIGURE 2. Frequency spectra of turbulent pressure at  the wall (pipe flow). Correction 
for transducer size not applied but independent of Reynolds number. 

ri, ft./s J(P2)IT R e  x 
0 97 2.32 5 1 5 i  

Piezo-electric element A 150 2.32 
n 200 2,24 
7 325 2.16 
x 410 2.09 

(r = 0.02 in.) 
17.2 
21.8 

0 300 
150 

2.18 condenser mike 15.9 
7.96 

Variation with Reynolds number in the intensity (2) of the wall-pressure 
fluctuations are minimized if the wall shear rUr = pou*2 is used to non-dimensional- 
ize intensity. This is illustrated on figure 1 for fully developed turbulent pipe 
flow and confirmed by the measurements of Bakewell, Carey, Libuka, Bchloemer 
& von Winkle (1962, pipe flow); of Hodgson (1962, subsonic boundary layers); 
and of Kistler & Chen (1962, supersonic boundary layer). 

The length scale in the downstream direction (zJ and lateral (z3) directions 
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are clearly given by the over-all transversal extent of the shear flow-the pipe 
diameter d or the boundary-layer thickness 6. This is shown on figures 2 and 3. 
Figure 3 is a plot of the frequency spectral density of the pressure intensity for a 
pipe over a Reynolds number range of over four to one which was obtained by 
varying the pressure drop across the pipe. Figure 3 is borrowed from Bakewell 

2&l and 2qfd 

FIGURE 3. Space correlations of wall pressures in a pipe from Bakewell et al. (1962).  

R, = o d / v  

0 300,000 (A 300,000 
D 250,000 Lateral correlation 7 250,000 
0 200,000 \A 150,000 
0 150,000 

R, = o d / v  

Longitudinal correlation 

et al. (1962) and shows lateral and longitudinal correlations of the pressure a t  the 
wall of a pipe to remain invariant over a friction length range of approximately 
two toone. 

Thus as the thickness of the inner region of a turbulent boundary layer shrinks 
(higher free-stream velocity) the intensity of the pressure field remains approxi- 
mately proportional to the intensity of the wall shear stress and the space scales 
of the pressure field a t  the wall remain approximately constant. 

Intensity 
The value of the pressure intensity, p, has been measured by Harrison (1958), 

Willmarth (1957), Skudrzyk & Haddle (1960), Hodgson (1962), Willmarth & 
Wooldridge (1962), Bull (1963), and Serafini (1962) in subsonic two-dimensional 
flat plate boundary layers; von Winkle (1960), Corcos (1962), Bakewell et al. 
(1962) in fully developed turbulent pipe flow; and Bull & Willis (1961), Kistler & 
Chen (1962), and Richards (1961) in a supersonic boundary layer. I n  general 
resolution errors differed from one experiment to another and agreement even 
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after resolution errors have been allowed for is mediocre. A detailed analysis 
of all the subsonic boundary-layer data suggests only that perhaps a t  the wall 
(p’lru,) 2 3.0 t 0.5 for Reynolds numbers U,S/v g 300,000 and that as has been 
remarked above the dependence of this ratio on Reynolds number appears to 
be small.? In turbulent pipe flows, the intensity is of the same order while in 
supersonic boundary layers the intensity seems to be larger-perhaps twice as 
large a t  a Mach number of 5.0. 
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FIGURE 4. The frequency spectrum of wall pressure in a tnrbulent boundary laycr. 
0 ,  Corrected for transducer resolution ; 0, Willinarth & Wooldridge (1962), uncorrrectecL 

Frequency spectra 
The frequency spectral density of the pressure a t  the wall 

@(o) = - R(0, 0, 0, r )  cos w d r  
n o  1, 

has also been measured by many. A large measure of disagreement is found among 
the reported values. Because the transducer resolution deteriorates as the 
frequency is increased, at high frequencies, the disagreement is primarily due 
to the difference in size and therefore in resolution of the transducers. Will- 
marth & Wooldridge (196s) achieved the best resolution to date? in a subsonic 
boundary layer with a ratio of transducer radius to boundary-layer thickness 
rjS = 0-0193. Their frequency spectrum is reproduced on linear scales on figure 4. 
Note the importance of the estimated size correction. 

t See, however, Bull (1963). 



Tzwbulent pressures in boundccry-layer Jlou~s 361 

At low frequencies important discrepancies may also be noted between the 
various measurements even under nominally equivalent conditions. Their 
origin is likely to be the presence of extraneous pressure contributions caused by 
secondary flows in the free stream, mass flow fluctuations and radiated noise. 
The spectra of Hodgson (1962), of Bull (1963) and of Serafini (1962) peak around 
wS*lU, = 0.2; the spectral density then decreases to some extent with the 
frequency. This behaviour is accentuated in spectral measurements made on a 
glider by Hodgson (196%). In the glider measurements, the boundary layer a t  the 
measuring station was subjected to a moderately adverse pressure gradient. 

Convective properties of the pressure field-similarity of the co- 
variances 

It is known from the results of Favre, Gaviglio & Dumas (1957) that the spatial 
structure of the turbulent velocity field in a boundary layer is altered rather 
slowly if it is viewed in a preferred co-ordinate system which moves downstream 
with respect to stationary boundaries a t  a rate which depends on the distance 
from the wall a t  which the measurements are made: for a two-dimensional bound- 
ary layer we define, say, 

._ 

The function $ peaks for pairs of values of 5 and 7 (over a narrow range of 
values of 7) which are such that [IT = [< is approximately constant and equal to 
the local mean velocity (figure 5). This velocity will be called a convection 
velocity. For a judicious choice of (small) 7 the peaks decrease slowly as the down- 
stream separation [ increases. I n  the outer part of the boundary layer the opti- 
mum space-time correlation exceeds 0.5 for separation distances equal to many 
boundary-layer thicknesses. For the inner part of the layer this convective auto- 
correlation is shorter-lived: for y/S = 0.06 it  drops to a value of 0.5 over the time 
required for a downstream travel equal to about one boundary layer thickness. 

Early measurements by Willmarth (1957) revealed that the pressure field 
a t  the wall reflected this behaviour. Longitudinal space-time measurements of 
the fluctuating pressure a t  the wall of a boundary layer yielded correlations 
which peaked for pairs of values of r and 6 such that (</TU,) = 0-82. More 
recently, many authors have obtained similar results in turbulent boundary 
layers and pipe flows. Willmarth & Wooldridge ( 1962) gave a particularly detailed 
mapping of the longitudinal space-time correlation which indicated a progressive 
increase in the convection velocity U, as the distance between the two measuring 
stations was increased. The apparent convection of the pressure field a t  the 
boundary is clearly due to the combined translation of the sources of pressure 
within the turbulent flow. 

We may profitably view the space-time correlations of the pressure as a Fourier 
synthesis with respect to time of individual frequency components. 

For a point on the boundary let us define a cross-spectral density I'(& 7, w )  by 
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where RE, 7, 7 )  = p(x,, 0; x3, t )p(z ,+ 6, 0, x3 + 7, tG). Since R(6, 7 , ~ )  is real, the 
real part of I? is symmetric and the imaginary part anti-symmetric in w and 

____ ~ 

If the output of two pressure transducers (6, 0) apart is filtered by two identical 
and (infinitely) narrow band-pass filters of, say, unit width, the mean of the 
product of their output is a non-decaying periodic function of T 

R&-, 077) = I Jx, 0, w )  I cos (WT + co. 

0 1 2 3 4 5 6 
U,r/S 

FIGURE 5 .  The space-time correlation of longitudinal velocity fluctuations from 
Fame et al. (1957). 

Irl, the amplitude of this periodic function and a its phase angle are readily 
measured. This was done by Corcos (1962), Willmarth & Wooldridge (1962), 
and Bakewell et al. (1962). It is clear that in principle such measurements are 
equivalent to the direct recording of space-time correlation. But they possess 
over the latter at least two advantages. They allow (Corcos 1963) a systematic 
correction for transducer size. Also, they exhibit explicitly what we shall call 
the similarity properties of the covariance of the pressure field. 

These properties are derived from the result that the complex function r, 
when rendered non-dimensional, is nearly a function of a single similarity variable 
which involves w and [ as a product. Specifically: if the angle tl. is used to define an 
average translation velocity U,(w, () by 

then the ratio A defined by 

is found to be approximately a function of w€JU, only, while C</Um is found to be 
a weak function both of wS*/U, and of [/a*. The similarity variable upon which 
both the magnitude and the argument of I? depend is therefore w[/V,.  The magni- 

01 = -wguc ,  ( 8 )  

A = l~(@?&)llw4 (9) 
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tude I I?/ is a measure of the convective memory of a frequency component and 
its dependence on wllU, only implies that this memory is approximately inde- 
pendent of the characteristic frequency of the flow, say, Um/8*. The evidence in 
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wEl “ c  

FIGURE 6. The amplitude of the cross-spectral density in a boundary layer, from 
Willmarth & Wooldridge (1962). v, w6*JU, = 5-00; 0, wS*/U, = 0.68. 

I I I I I I I 
0 1 2 3 4 5 6 7 8 9 

W* 
FIGURE 7. The convection velocity in a boundary layer. Data from Willmarth 

dz Wooldridge (1962). A, wS*/U,  = 5.00; 0 ,  wS*/U, = 0.68. 

favour of this result is provided by the measurements of Willmarth & Wool- 
dridge (1962) and by us, and is somewhat more weakly brought out by Bull 
(1963), Bakewell et nl. (1962)) Hodgson (1962), and Harrison (1958),t who first 
made cross-spectral density measurements. 

t The data as presented by the three authors mentioned last appears to require large 
systematic corrections due to the finite band width of the filters used (cf. Corcos 1962, 
appendix). 
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In a turbulent boundary layer, Willmarth & Wooldridge measured both 
A and a for a range of separations of [ and for two widely separated frequency 
hands centred around wS*IU, = 0.68 and oS*lU, = 5.45. Their datat  is pre- 
sented on figure 6 where A is plotted as a function of o[/U, = -a  with wS*/U, 

&-/ uc 
FIGURE 8. The amplit.ude of the cross-spectral density in a pipe. [ / d :  0 ,  0.2; A, 0.15; 

v, 0.75; 0, 11.2. 

FIGURE 9. Thc convection speed as a funct>ion of frequency in a pipe. 

as a parameter and on figure 7 where UJU, is plotted as a function of [IS* with 
wS*lU, as a parameter. Note that I<.U, varies relatively little with (IS* and more 
with oS*lU,. 

Similar measurements were obtained in pipe flow with fewer separation 
t The values presented here are not those quoted by the authors. Our definition of 

translation velocity (equation (8)) differs from the one they used. Also, since the band- 
pass was wide, the effective frequency of the filter was different from the centre frequency 
whenever the spectral density varied appreciably within the band-pass. This happened for 
the higher frequency band. 
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distances and a greater number of frequency bands. The corresponding plots 
of A and qla (where u i s  the mean discharge velocity for the pipe) are given in 
figures 8 and 9. 

We shall see that the accuracy to which F depends only on w[lU, can be checked 
in detail from independent measurements of Willmarth & Wooldridge. 

Longitudinal space-time correlations and two-dimensional spectra 
As might be expected, the fact that the amplitude function A is approxi- 

mately a function of the phase angle a only has strong consequences for the 
correlation R( [, 7) and the related spectral function El( k,, 0). For our wall pressure 
field assumed stationary and x-wise homogeneous, we define the full Fourier 
transform 
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FIGURE 10. A check of the similarity variable w[/U, .  
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and from equation (7) 

Then, in view of the experimental results discussed above, we can write approxi- 

(12) 

FIGURE 11. Longitudinal space-time correlations in a pipe. Solid lines are Fourier trans- 
forms of cross-spectral densit>y. A, Direct measurement [Id = 0.2 in; ., direct measure- 
ment (Id = 0.75 in. 

from which i t  follows, E, being real, that 

where ,u = k, [{Jw and E, is the cosine Fourier transform of A ,  

I n  the integration leading to equation (13), k, Ucjw is required to be fixed so that 
T $  must be independent of 6 for a given o. Figure 7 suggests that this condition 
is closely satisfied. On the other hand, according to equations ( 7 )  and (12j 

R(6,7) = J; @ ( w )  A(w6K7,) cos (w7 - gq.) dw. (11 )  
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A direct check on the accuracy with which similarity variables yield space- 
time correlations from the frequency spectrum @ ( w )  and the amplitude of the 
function A(w[/U,) is presented in figures 10 and 11 where predictions obtained 
from a numerical integration of the integrand in equation (14) are compared with 
direct measurement of the space-time correlation in a boundary layer (Willmarth 
& Wooldridge 1962) and in a pipe. The agreement, particularly in the case of the 
boundary layer, seems convincing. 

Similarity and Taylor’s hypothesis 
Taylor’s hypothesis suggested that for low turbulence levels and uniform mean 

flow (turbulence behind grids) apparent changes in time a t  a fixed station are 
almost entirely due to the translation of spatial non-uniformity past a fixed 
observer, i.e. 
or in terms of correlations 

Zfi(X1, t )  z Zf&1- v,t, O), 

R,,(O, 7) = w ~ ( x ~ ,  t )  w ~ ( x ~ ,  t + 7) = W ( ( Z ~ ,  t )  w ~ ( x I  - UC7, t )  = R,i( - q ~ ,  0), 
which can be written 

R&, 0 )  = som Qii(o) cos (w[/V,) dw. (15) 

The difference between equations (14) and (15) for space correlations with no 
time delay (where Rii and Qii are replaced by the corresponding pressure correla- 
tions and pressure spectral densities) is numerically quite small because for all 
combined values o f t  and w for which neither R([)  nor @ ( w )  are negligible, A(w[/UJ 
is relatively close to unity. However, the fact that U, is a decreasing function 
of frequency implies that for small separation distances [, R([,O) falls more 
rapidly and for large [ less rapidly according to equation (14) than would be the 
case if an average translation velocity were assumed (as is usually done in applica- 
tions of Taylor’s hypothesis). This is illustrated on figure 12 where equations (15) 
(with a fixed ri,) and (14) have been applied to our pipe data. 

It will be shown later that the assumption of a locally frozen velocity field 
obeying Taylor’s hypothesis leads to space-time correlations for the pressure 
a t  the wall which are essentially similar in the sense defined above. 

The integral time scale of the pressure at the wall 
It is apparent from figures 10 and 11 that, according to the similarity hypo- 

thesis, the correlation curves widen as their amplitude decreases. In  fact the 
integral scale 

is independent of [. By definition 

r ( o , w )  = - COSW7R(O,7)d7 = @(a), 
n o  sm 

so that the function A ( w , t )  = {F(oJ, [)/@(w))cos (w[/U,) tends to 
whether A is truly a function of wlJCc or not. On the other hand 

unity as [ + 0 
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But according to the similarity hypothesis, and defining To = Tl for = 0,  

r(o,t) = q o )  = ( ~ T ) - v q o , o ) ~ o ;  (16) 

i.e. To = = const. The assumption used for this result, namely that d 
depends only on wt /" ,  no matter how small this variable, is not supported by 
strong experimental evidence (figures 6 and 8) but the space-time correlations 
measured in turbulent boundary layers and pipes come quite close to satisfying 
equation (16). 
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FIGURE 12. The longitudinal correlation in a pipe. Taylor's hypothesis 

and the similarity hypothesis 

It thus seems that as a given pressure pattern is translated downstream i t  
does not become incoherent so much as spread out. In  fact it is possible to account 
for these features of the longitudinal space-time correlation as the result of the 
dispersive effect of the mean velocity gradient on the pressure sources on the 
assumption that the pressure field is contributed by a number of sources which 
are translated over a range of velocities CjC(x2) and which retain convective- 
auto-correlation for a long time. It can be seen from a simple example that 
departures from similarity may be a measure of the relative importance of the 
convective lack of coherence of a given source and of the dispersive action of the 
mean velocity gradient upon the contributing sources. 

Without identifying the sources specifically, we write, according to equation 
(6) for a point a t  the boundary with co-ordinates (0 ,  0,O) 
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Likewise for another point on the wall, a distance ( downstream of the first, 

where i is the unit vector in the downstream direction. Hence the correlation 
between pressure a t  the two points is 

~ 

Call y'-y = x and assume that the correlation SX' is that between infinitesi- 
mally spread sources convected at speeds U,(y2) and perfectly correlated in time in 
a convective frame of reference, so that 

- _  ~~~ 

S(y,  t )  S(y', t+r) = M'2(y2) S ( X ,  - q r )  6(x2)  6 ( X , )  h,h2h,; 

F2 is the intensity of the source a t  y2, Al,2.3 are three lengths scales of the 
source, S(v) is a Dirac delta function and U, is a function of yz. 

Then substituting and integrating with respect to x, we have 

( 1 7 )  

Thus, R(C,7) has the following properties. For r = 0, the correlation decreases 
as ( increases. For 6 = 0, the correlation decreases as r increases. 

Since U, is a function of y2, the effective value of / y + i Q  - it( is always greater 
than IyI over the integral for E + 0 so that even a t  an optimum r ,  the correlation 
decreases as 6 increases. 

Finally, the time scale 

can be rewritten for any single y2 with r' = 7 - ([/U,) and integrated with respect 
to r first. The time scale then becomes invariant with respect to 5, 

J - W  

The very simple model above has the properties which we have approximately 
attributed to  the real pressure field. Thus the dispersion of the sources of pressure 
by the mean stream may well be the dominant mechanism responsible for the 
convective lack of coherence of the pressure (departure from Taylor's hypothesis). 
But the model also warns us that inferences cannot be made about the detailed 
structure of the velocity or of the vorticity field from measurements of the pres- 
sure at the wall because the pressure is rather insensitive to these details. 

Lateral correlation-generalized similarity variables 
For a boundarylayer, Willmarth & Wooldridge (1962) and, for a pipe, Bakewell 

et al. (1962) have measured the cross-spectral density of the lateral correlation, 
i.e. the function r(0, q, O J ) / @ ( W ) .  In  both cases the data suggest that the filtered 

34 Fluid Mech. 18 
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correlation amplitudes have a lateral scale which is nearly proportional to I/@. - 
One may define 

so that 

1 .o 
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0.6 
;=I" . c 
3 6 0.4 

0.; 

C 

FIGURE 13. The lateral cross-spectral density in a boundary layer from Willmarth Sr 
Wooldridge (1962). 0, oS*/U, = 0.68; v, oS*/U,  = 5.00. 
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FIGURE 14. Lateral correlation; test of the similarity variable q / l J 0 .  0, Measured 

(Willmarth & Wooldridge) ; -, computed from R(7) = 
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The data presented on figure 13 indicates that approximately 

U O ,  T I ,  w )  = @(@I ww/U 

371 

so that R (O ,T ,  0) = --m @(w)R&) dw. (18a)) 

If for Willmarth’s boundary layer, one computes R(O,y ,  0) from (18a) by using 
measured values of @ ( w )  and of B(oq/U,) one obtains (figure 14) a lateral correla- 
tion in excellent agreement with measured values. 

The location and nature of the pressure sources 
The experimental results which have been discussed and formal solutions 

such as equation (6) lead us to expect that the spatial structure of the turbulent 
pressure in a shear flow is not as fine-grained as that of the velocity field and one 
may well wonder whether the pressure is not defined more simply than a literal 
reading of equation (3)  would suggest. 

The motivation for simplifying equation (3) is very strong. For instance, it  can 
be seen from equations (3) and (6) that a quantity as simple as (p”),.,, is given by 

where d a  is an element of volume, the integration is twofold over the space 
yi > 0 and yg > 0 and where 

a quantity which is beyond assessment. On the other hand it has been suggested 
that the first term of expression (20) for the source, the only one involving only 
second-order correlations, is in fact the dominant term. For a two-dimensional 
turbulent boundary layer this term very nearly reduces to 

a q  a q  av, at1 4- ~ __ 2 4  
?y; ayg ay; ay;* 

The dominaiice of this term has been expected physically because the mean 
velocity gradient SUJay, is known to be a large quantity in the inner part of the 
boundary layer or more precisely because the product ( a r i , / a z ~ ~ ) ~  (av2/ayJ2 has a 
maximum value which exceeds that of any other of the fourth-order terms in 
expression (30).  The relative importance of this mean-shear-turbulence inter- 
action term and of all others has been discussed more formally by Kraichnan 
(1956) and by Hodgson (1962). But the comparison is not decisive primarily 
because the models of the velocity field used for such an estimate are necessarily 
very coarse (see, e.g., Corcos 1962). On the other hand the recent and detailed 
measurements of Wooldridge & Willmarth (1962) may be used to  satisfy our 
curiosity on this point and render unnecessary estimates based upon models. 

24-2 
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These measurements give us for a large carefully developed turbulent boundary 
layer, the pressure intensity a t  the wall, its frequency spectral density, the space- 
time correlation of the pressure at the wall and the space-time correlation of the 
pressure a t  a fixed point of the wall with all three components of the velocity 
fluctuation vector over a grid of values of the location of the velocity measuring 
probe. In  particular, the correlation function 

__ ~-~ 

P(X, 4 8% (x + 5, f + T)/% 

was recorded for a very complete set of values of 5 and 7 with x2 = 0. Here 5 is 
the position vector of the hot-wire probe with respect to the pressure transducer 
location. From these measurements one can compute directly and without 
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T* = ru,/s* 
FIGURE 15. The normalized pressure covariance in a boundary -layer. 

Data from Wooldridge & Willmarth. 

additional assumptions, ( a )  the fraction of the pressure intensity at the wall 
contributed by the mean shear-turbulence interaction term; ( b )  the space and 
the time covariances of this contribution and (c )  its average convection velocity. 
The method of computation is given in an appendix together with a discussion 
of the reliability of the results. These results are as follows. 

I n  the boundary layer of Wooldridge & Willmarth, the linearizing assumption 

leads to an auto-correlation of the pressure a t  the wall, the characteristic time 
of which is much shorter than that of the observed pressure auto-correlation. 
As is shown on figure (15), the computed auto-correlation crosses the time axis 
for rU,/S* = 0.82 and is negligible beyond rU,/S* = 2.5, while the auto- 
correlation measured by Willmarth & Wooldridge (1962) crosses the time axis 
for rU,lS* = 2-8 and does not reach a maximum negative value untilrU,/S* = 8.0. 
The same linearizing assumption leads to a mean-square pressure intensity a t  the 
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wall which is approximately 32 yo of the observed value. The inference that the 
lion-linear terms contribute the balance is not rigorous because as expression 
(20) shows, there are in fact three types of sources-originating from the product 
of linear terms with themselves, of linear witoh quadratic terms, and of quadratic 
terms with themselves. The computation evaluates the sum of the purely linear 
contributions and half the cross-contributions. However, the latter are likely to 
be small because they are the result of third-order correlations between typically 
distant points. 
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0 0.5 1 -0 1.5 
Y 2 P *  

FIGURE 16. The Contribution of mcan shear-turbulence interaction to the pressure 
P;. P 2  
7, P’2 

at the wall. - = 1.23; - = 0.314. 

The translation velocity of the linear contribution to the pressure field aver- 
ages 0*66U, and increases little with separation distance. By contrast the transla- 
tion velocity of the observed pressure averages 0*82U,. 

Figure 16 indicates what part of the boundary layer contributes linearly to the 
pressure a t  the wall by giving the result of a partial integration of the data along 
planes parallel to the wall. p‘/r,, is the area under the curve. Figure 17 alike 
shows the linear contribution of four slices of the boundary layer to the auto- 
correlation of the pressure a t  the wall. One observes that while the time and 
length scales of the linear pressure sources increase with y2 and approach those of 
the observed wall pressure for y2/6* = 3-0, the strength of these sources at  such 
distances is so small as to be negligible. Thus the linear sources contribute to the 
wall pressure intensity and to its auto-correlation only within a narrow region, 
y2/6* < 1.0 and the bulk of this contribution is found around 

y2/6* = 0.2 (y* = 440). 
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Lilley (1963) used the assumption that the linear source terms are dominant 
and a model of the velocity field to compute the covariance of the pressure a t  
the wall. His results are suggestive of the observed values. But the same model 
also yields pressure-velocity covariances which are so different from those 
directly observed that the statistical description of the velocity field v2 by the 
model cannot be satisfactory, and final agreement of some of the features of the 
computed and observed pressure fields must be regarded as fortuitous. 

In  summary, the velocity-pressure covariance measurements of Wooldridge 
dl: Willmarth show that for the purpose of computing turbulent pressures from 
given turbulent velocities, one is not justified (in an incompressible boundary 
layer) in linearizing the unsteady equations of motion around a known mean 
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FIGURE 17. The contribution of the mean shear-turbulence interaction to the pressure 
at, the wall : the autocorrelation contributcd by various laminae of the boundary layer 

velocity. The source term obtained in this way, while significant, is not the 
primary cause of the low frequency, large-scale part of the observed pressures, 
and it is a t  most of the same order of importance as the non-linear source terms. 

The pressure near the wall 
We have just seen that the linear source terms located in the region yu*/v < 100 

do not contribute much to the pressure field (except perhaps at very high fre- 
quencies). It is very likely that the non-linear source t,erms are weak there also, 
first because the bulk of the pressure field is translated a t  a speed 2 0.83Lr, 
which suggests that the average location of the pressure sources is y" = 3000, 
and second because unless the longitudinal space scale of the non-linear source 
terms is, in that region, several times as large as that of the linear term, their 
contribution to the wall pressure would also be concentrated within an unrealisti- 
cally high-frequency band. This suggests that within the narrow but interesting 



Turbulent pressures in boundury-layer j?ows 375 

region yu*/v < 100 it is possible to express the pressure field in terms of its wall 
value. If we define a random pressure component (a generalized function) n by 

n(x2, k, t )  = - p(x, t )  exp (- i ( k , z ,  + E,x,))dx,dx,, 

and a source function T by 

T(z,, k, t )  = - -- S ( x ,  t )  exp (- i (k ,x ,  + k , ~ , ) )  dxldx3, 

where k = ( k l ,  k3)  and if k = Ikl then (cf. Kraichnan 1956) one may deduce from 
equation (3) a simple ordinary differential equation relating 7r and T.  If one makes 
use of the boundary condition (?p/&2)x2=o = 0, which implies (dnldx,), = 0,  
one may give the solution for n as 

n(x,, k) = n(0, k) cosh kx, - sinh k(x, - x;) T(x; ,  k) dx;. 

This form of the solution emphasizes the fact that only sources found between the 
boundary and the field point x2 prevent the value of 7r(x2, k) from being specified 
in terms of n(0, k). The wave-number spectrum is related to n (x,, k) by 

and is therefore 

E(x,, k) = E(0, k) cosh2 kx, - k,S(k + k,)/r sinh k(x, --xi) T(x i ,  k) n(0, k’) dxi 
_ _ ~ -  2 cosh kx, 

1 1  x* s1 + ,. ---i-I 1 sinh k(x, - x;) sinh k(x2  -xi) T(x i ,  k) T(xi ,  k‘) dzidx;. 
kX S ( k + k )  0 0 

(21) 

Now let us choose x2 small enough so that x,u*/v < 100. For the conditions of 
Wooldridge & Willmarth’s experiment, this corresponds to x2/6* < 0.055 and 
for such distances from the wall, (a )  kx, < 1 for the bulk of the energy spectrum 
(which is found for k6* < 5 ) ,  ( b )  the integral of the covarisnces of the pressure 
sources over the lamina 0 < x; 6 x2 yields a negligible contribution to the pressure 
a t  the wall. Under the same conditions it is easy to show that the second integral 
on the right-hand side of (21) is of order a t  most (kx,) times the first and that the 
latter is not only small with respect to E ( 0 , k )  but also small with respect to 
(kx,), E(0, k), so that E(x,, k) 2 E(0, k) cosh2 kx, 

except for very high wave-numbers. An expression for 2 ( x 2 )  can easily be de- 
duced from (22). 

Equation ( 2 2 )  is the solution which would correspond to the equation and 
boundary conditions 

( 2 2 )  

dnldx,  = 0 a t  x, = 0, 
n(x2, k) given a t  x 2  = some specified distance, h, from the wall. 

V p  = 0; 

It follows that, while the momentum flux fluctuations are very large within this 
region, they do not affect directly the pressure fluctuations locally, essentially 
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because they are spatially too incoherent over iieighbourhoods wit,hin which 
momentum flux fluctuations originating further from the wall give rise to 
strongly correlated pressure fluctuations. 

This work was initiated under National Science Foundation Sponsorship. 
It was completed during stays a t  the Je t  Propulsion Laboratory; for this 
opportunity and his friendly and critical interest, I thank Dr John Laufer. 

Appendix. The computation of the covariance of the pressure from 
the linear source term 

The computation uses the measurements of Wooldridge & Willmarth ( 1962) 
of mean velocity, U,, intensity of the time derivative of the velocity component 
normal to the wall il (for simplicity we redefine here ziZ as 2,) and covariance of 
p a t  the wall with 6. 

From equation (6) which assumes (ap/axz)s,-o = 0 and the assumption that 
only the first term on the right of equation (3) (the ‘linear’ term) contributes 
appreciably to the pressure, we get for a point x = (xl, 0, x3) on the wall 

and hence 

av av < = y’-x, 7 = (f-t); -- - - I - f(Y‘, Y - Y‘> 71. Here 

On the other hand 
3Y1 aY1 

where x‘ = x + g ,  is another point on the wall. Hence 

Now Wooldridge & Willmarth have measured a function Rp; which is easily re- 
lated to C. For data for 

pfx, t )  ir(x + 5, t /.t 
(p2 d2)t 

R . = .~ __.= 
P 1’ 

shows that for sufficiently short times and to a very good accuracy 

RPV(0’ 5 2 ,  097) = Xp&-l’ 52’ 0,T  + Kl/Ul)), 
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where U, is the mean velocity a t  c2. This means that delay time and longitudinal 
separations can be interchanged for sufficiently small delay times, so that 

P ( X ,  t )  av (x + L t + 7)E1 C K 7 )  

[ P 2  (avjay;)”]: [P2 (av/aYl) 1 
CKl, <23 c 3 >  7) = C{O, <2> c 3 > 7  - (cI/w).  

, 2 = C t L 7 ) >  - -. _ _  B,;,(q,7) = - ~ - - = ~ 

and that 

The delay times 7 for which these relations are valid vary with c2 as shown in the 
following table 

c2/8* 0.1 0.2 0.5 1.0 2-0 

7Um/8* < 0.9 1.3 1.8 2.7 5.0 

For larger delay times, account could be taken of the progressive decrease of the 
source strength, but this is not necessary for the computations presented, since 
the character of the computed auto-correlation of p at the wall is apparent for 
7u,/8* < 0.8. Thus the measurements of R,;,(O, c2, cl, 7 - (i&/U1)) supply the 
integrand in equations such as ( a )  and (b ) .  The integration is carried out numeri- 
cally over planes parallel to the wall first, after contours of G((,7)62 have been 
plotted and by using a fine grid. Finally, the integration is performed in the yk 
direction normal to the wall after drawing smooth curves through the points 
obtained from the partial integration. The auto-correlation of the observed 
pressure (figure 15) was measured by Willmarth 8: Wooldridge (1962). 

Accuracy 

The data provide several hundred values of Rp; for well-chosen values of < and T.  

I n  addition Wooldridge & Willmarth have measured Rpv independently and 
this provides both a consistency check and a means of assessing with some 
precision the asymptotic values of Rp; because, over the significant region of 
integration, whenever Rp;, becomes too small to be assessed with accuracy 
[ & , ( T ) ] ~  has a well-defined (though small) slope. It is found that the effect of 
these asymptotic tails of R,;, are negligible. 

The accuracy of the inferences made makes variable demands on the accuracy 
of the data. For instance, the probable error in the computation of the mean- 
square intensity is estimated as 20-30 %, but the probable error in the delay time 
for the first zero of the auto-correlation curve is not likely to exceed 10 yo even 
if one allows for very large systematic errors in the data (for which there seems 
to be no evidence if we except the finite space resolution of the pressure trans- 
ducer used). 

R E F E R E N C E S  

BAKEWELL, H. P., CAREY, G. F., LIBUKA, J. J., SCHLOE~WER, H. H. & VON WINKLE, W. A. 
1962 Wall pressure correlations in turbulent pipe flow. U.S. Navy Under-water Sound 
Laboratory Report no. 569. 

BULL, M. K. 1963 Properties of the fluctuating wall-pressure field of a turbulent boundary 
layer. Uniaersity of ,Youthampton, A.A.S .  U .  Report, no. 234. 

BULL, M. K. & WILLIS, J. L. 1961 Some results of experimental investigations of the 
surface pressure field due to a turbulent boundary layer. ITniaersity of Routlmmpton, 
A.A.S.U. Report, no. 199. 



378 G. M .  Corcos 

CORCOS, G. M. 1962 Pressure fluctuations in shear flows. University of California Inst. 
of Eng. Res. Report, Series 183, no. 2. 

CORCOS, G. M. 1963 On thc resolution of pressure in turbulence. J .  Acoust. Soc. Amer. 
35, no. 2. 

FAVRE, A. J., GAVIGLIO, J. J. & DUMAS, R. 1957 Space-time double correlations in a 
turbulent boundary layer. J .  Fluid. Mech. 3, 313. 

HARRISON, M. 1958 Pressure fluctuations on the wall adjacent to a turbulent boundary 
layer. David Taylor Model Basin Report, no. 1260. 

HODGSON, T. H. 1962 Pressure fluctuations in shear flow turbulence. C‘ollege of Aero- 
nautics, Cranfield, Note, no. 129. 

KISTLER, A. L. & CHEN, W. S. 1962 The fluctuating pressure field in a supersonic turbu- 
lent boundary layer. Jet Propulsion Laboratory Tech. Rep., no. 32-277. 

KLEBANOFF, P. S. 1954 Characteristics of turbulence in a boundary layer with zero 
pressure gradient. Nut.  Adv .  Comm. Aero. (Wash.)  Tech. Note, no. 3178. 

KRAICHNAN, R. H. 1956 Pressure fluctuations in turbulent flow over a flat plate. J .  
Acoust. SOC. dmer .  28, 378. 

LILLEY, G. M. 1963 Wall pressure fluctuations under turbulent boundary layers at  sub- 
sonic and supersonic speeds. College of Aeronautics, Cranfield, COA Note 140. 

LILLEY, G. M. & HODGSON, T. H. 1960 On surface pressure fluctuations in turbulent 
boundary layers. A G A R D  Report, no. 276. 

PHILLIPS, 0. M. 1954 Surface noise from a plane turbulent boundary layer. Aero. Res. 
Counc. (London), no. 16,9G3. 

RICHARDS, E. J. 1961 Aerodynamic noise sources. Paper B. 3, ‘Control of Noise’ confer- 
ence, National Physical Laboratory, Teddington. 

SERAFINI, J. S .  1962 Wall pressure fluctuations in a turbulent boundary layer. Ph.D. 
Thesis, Case Institute of Technology. 

SKUDRZYK, E. F. & HADDLE, C. P. 1960 Noise production in a turbulent boundary layer 
by smooth and rough surfaces. J .  dcoust. Soc. Amer. 32, 19. 

TOWNSEND, A. A. 1956 The structure of turbulent shear pow. Cambridge Universitv 
Press. 

UBEROI, M. A. & KOVASNAY, L. S. G. 1953 On the mapping of random fields. Quart. 
AppZ. Math. 10, 376. 

VON WINKLE, A. A. 1960 Some measnrcments of longitudinal space-time correlations of 
wall pressure fluctuations in turbulent pipe flow. Univ. of California Inst. of Eng. Res 
Report, Series 82, Issue no. 20. 

WILLMARTH, W. W. 1957 Space-time correlations and spectra of wall-pressure in a tur- 
bulent boundary layer. Nut.  Adv. Comm. Aero. Tech. Mem. no. 3-17-59 W. 

WILLMARTH, W. W. & WOOLDRIDGE, C.E. 1962 Measurements of the fluctuating 
pressure a t  the wall beneath a thick turbulent boundary layer. J .  Fluid Mech. 14, 187. 

WOOLDRIDGE, C. E. & WILLMARTH, W. W. 1962 Measurements of the correlation between 
the fluctuating velocities and fluctuating wall pressures in a thick turbulent boundary 
layer. Univ. of Michigan, ORA Report no. 0-2920-2-T. 


